Image Source: tatacenter.mit
Ramesh Raskar presents femto-photography, a new type of imaging so fast it visualizes the world one trillion frames per second, so detailed it shows light itself in motion. This technology may someday be used to build cameras that can look “around” corners or see inside the body without X-rays.
In 1964 MIT professor Harold Edgerton, pioneer of stop-action photography, famously took a photo of a bullet piercing an apple using exposures as short as a few nanoseconds. Inspired by his work, Ramesh Raskar and his team set out to create a camera that could capture not just a bullet (traveling at 850 meters per second) but light itself (nearly 300 million meters per second).
Stop a moment to take that in: photographing light as it moves. For that, they built a camera and software that can visualize pictures as if they are recorded at 1 trillion frames per second. The same photon-imaging technology can also be used to create a camera that can peer “around” corners , by exploiting specific properties of the photons when they bounce off surfaces and objects.
Among the other projects that Raskar is leading, with the MIT Media Lab’s Camera Culture research group, are low-cost eye care devices, a next generation CAT-Scan machine and human-computer interaction systems.